X iv : d g - ga / 9 70 70 11 v 1 1 0 Ju l 1 99 7 “ Dimension theory of arbitrary modules over finite von Neumann algebras and applications to L 2 -

نویسنده

  • Wolfgang Lück
چکیده

We define for arbitrary modules over a finite von Neumann algebra A a dimension taking values in [0,∞] which extends the classical notion of von Neumann dimension for finitely generated projective A-modules and inherits all its useful properties such as Additivity, Cofinality and Continuity. This allows to define L2-Betti numbers for arbitrary topological spaces with an action of a discrete group Γ extending the wellknown definition for regular coverings of compact manifolds. We show for an amenable group Γ that the p-th L2-Betti number depends only on the CΓ-module given by the p-th singular homology. Using the generalized dimension function we detect elements in G0(CΓ), provided that Γ is amenable. We investigate the class of groups for which the zero-th and first L2-Betti numbers resp. all L2-Betti numbers vanish. We study L2Euler characteristics and introduce for a discrete group Γ its Burnside group extending the classical notions of Burnside ring and Burnside ring congruences for finite Γ.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : d g - ga / 9 70 30 14 v 1 2 1 M ar 1 99 7 GEOMETRY OF GROWTH : APPROXIMATION THEOREMS FOR L 2 INVARIANTS

In this paper we study the problem of approximation of the L-topological invariants by their finite dimensional analogues. We obtain generalizations of the theorem of Lück [L], dealing with towers of finitely sheeted normal coverings. We prove approximation theorems, establishing relations between the homological invariants, corresponding to infinite dimensional representations and sequences of...

متن کامل

ar X iv : d g - ga / 9 70 70 20 v 1 2 5 Ju l 1 99 7 COMPARISON AND RIGIDITY THEOREMS IN SEMI - RIEMANNIAN GEOMETRY

The comparison theory for the Riccati equation satisfied by the shape operator of parallel hypersurfaces is generalized to semi–Riemannian manifolds of arbitrary index, using one–sided bounds on the Riemann tensor which in the Riemannian case correspond to one–sided bounds on the sectional curvatures. Starting from 2–dimensional rigidity results and using an inductive technique, a new class of ...

متن کامل

ar X iv : m at h / 04 07 22 0 v 1 [ m at h . O A ] 1 3 Ju l 2 00 4 DUALITY AND OPERATOR ALGEBRAS

We investigate some subtle and interesting phenomena in the du-ality theory of operator spaces and operator algebras. In particular, we give several applications of operator space theory, based on the surprising fact that certain maps are always w *-continuous on dual operator spaces. For example, this yields a new characterization of the σ-weakly closed (possibly nonunital and nonselfadjoint) ...

متن کامل

ar X iv : d g - ga / 9 70 60 06 v 1 6 J un 1 99 7 ON THE HOMOTOPY INVARIANCE OF L 2 TORSION FOR COVERING SPACES

We prove the homotopy invariance of L torsion for covering spaces, whenever the covering transformation group is either residually finite or amenable. In the case when the covering transformation group is residually finite and when the L cohomology of the covering space vanishes, the homotopy invariance was established by Lück [Lu]. We also give some applications of our results.

متن کامل

ar X iv : d g - ga / 9 50 70 04 v 1 2 4 Ju l 1 99 5 LOCALISATION OF THE DONALDSON ’ S INVARIANTS ALONG SEIBERG - WITTEN CLASSES

This article is a first step in establishing a link between the Donaldson polynomials and Seiberg-Witten invariants of a smooth 4-manifold.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997